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PRECE

The research described in this report, "Markov Models For Maltiple Bus Mul-

tiprocessor Systems," UCIA-ENG-8203, by Marco Ajnme Marsan and Mario Gerla, was

carried out as part of the Research in Distributed Processing, sponsored by the

Office of Naval Research, Contract No. N00014-79-C-0866 under the direction of A.

Avizienis, Principal Investigator, B. Bussell, M. Ercegovac, M. Gerla, S. Parker and

D. Rennels, C-Principal Investigators, in the Oumputer Science Department, School

of &gineering and Applied Science, University of California, Los Angeles.
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MWV MODELS FR

MULTIPLE BUS MULTIPROCESSOR SYSTEMS

Marco Ajmone Marsan and Mario Gerla

UCLA Omputer Science Department
University of California, Los Angeles

ABSTRACT - Markovian models are developed for the performance analysis of mul-

tiprocessor systems interccmmxicating via a set of busses. The performance

index is the average number of active processors, called processing power.

Fram processing power a variety of other performance measures can be derived

as dictated by the specific processor application. Exact models are first in-

troduced, and are illustrated with a simple exanple. The computational can-

plexity of the exact models is shown to increase very rapidly with system

size, thus making the exact analysis impractical even for mediun size systems.

To overcame the canplexity of canputation, several approximate models are in-

troduced. The approximate results are compared with the exact ones and found

tc be surprisingly accurate for a wide range of configurations. Simulation is

used to validate the analytic models and to test their robustness.

This research was supported in part by the Office of Naval Research under con-
tract N00014-79-C-0866 and in part by a NNTO grant.

M. Ajmcne Marsan is currently on leave fran Politecnico di Torino, Istituto di
Elettronica e Telecamunicazioni, Torino, Italy.
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1. INRODUMON

Tightly connected multiprocessor systems are characterized by the pres-

ence of several processing units and one or more common memory areas, used by

the processors for the exchange of information and, possibly, the storage of

common code and data structures of non frequent use. Processors and common

memories are connected by sane kird of cammnication system, usually called

interconnection network.

Early multiprocessor systems were developed using crossbar networks to

connect processors and memories. A widely known crossbar multiprocessor sys-

ten is C.nmp, the Carnegie Mellon multiminicanputer [WULF72]. The performance

of crossbar multiprocessors has been widely analyzed in recent years [BHN"75,

BASK76, HOG77, SETH77, WILL78].

With the wvailability of inexpensive microprocessors, multiprocessor

systems with a very large nupker of components are now becoming feasible and

cost effective. For such systems a crossbar interconnection network may be

ii'tolerably expensive and in general it would provide a bandwidth much higher

than needed. A more attractive alternative is represented by bus-oriented in-

terconnection networks. Single or multiple bus architectures can be used, ac-

cording to the bandwidth required for the specific application. These inter-

connection networks are generally called "multiple-bus" or "highway deficient"

[WILL78] networks. Some papers addressing the analysis of bus systems ap-

peared very recently in the literature [HOEN77, FRNG78, WILL78].
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This report presents exact and approximate Mr}ovian models for the

analysis of multiple-bus multiprocessor systems. Section 2 describes the

basic multiprocessor system investigated in this study. In section 3 the

model for performance analysis is presented and the assumptions on system

operations are discussed. Section 4 derives a variety of application-oriented

performance indices . Section 5 provides an exact model for a simple crossbar

architecture. Section 6 discusses exact models for general multibus architec-

tures, %hereas section 7 derives some approximate, but canputationally very

efficient models. In section 8 stochastic Petri net models are introduced.

In section 9 exact and approximate analytic results are ca.pared, and simula-

tion results are presented.
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2. THE MILTIPLE PROCESSOR SYSTEM

This study considers multiple processor systems that exchange informa-

tion through a cammon memory which consists of several modules. Processors

and cannon memory moduules are connected by a set of "global busses". Each

global bus can connect any processor to any memory module. Every processor is

also connected (and has exclusive access) to a private memory. The block di-

agram of a system with 3 processors, 3 menory modules and 2 busses is shown in

fig. 1.

The exchange of information is accanplished by first writing the infor-

mation in the appropriate common memory module and then reading it fran the

destination processor. Due to the sharing of both memory modules and busses,

contention may arise, causing processors to queue for a resource which is

currently in use. If the nunber of busses b is greater or equal to the small-

er between the nunber of processors p ard the nunber of memories m, i.e.

b > rin(m,p), then the contention is only caused by the sharing of memory

modules. Therefore, a processor can alvays find a free bus to access a free

common mencry. If, on the other hand, the inequality is not satisfied, a pro-

cessor may be forced to wait for a memory which is currently free because no

bus is available.

Multiple processor systems for which the inequality holds are usually

known as "crossbar" architectures. Note that in general it is not wise to set

b min(m,p) unless we went to add some redundancy in the interconnection net-

work for reliability purposes. In fact, the availability of extra busses does

not affect the crossbar system model, nor does it improve its throughput.
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Multiple processor systems for which the first inequality does not hold

are usually called "highay deficient" systems or "(multiple) bus" architec-

tures (where the word multiple is dropped in the case of b=l). For these sys-

tems we assume throughout this report that p > m > b. The case m > p can be

analyzed using the same techniques described here; the models are generally

simpler than those presented in this report.

It is possible to construct a queueing network model for the analysis of

both types of systems. The general case is shown in fig. 2. Processors join

memory queues, and before proceeding to service (i.e. accessing memory) they

must be granted a permit (bus). The permit is returned upon ccnpletion of

service. The general model is thus a closed queueing network with p classes

of customers and with passive resources [CHAN78, KELL76b], which in this case

represent the busses. In the case of crossbar architectures the presence of

busses can be ignored, thus making the analysis substantially simpler than for

multiple bus systems.
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GLOBAL BUSSES
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Fig. I Block diagrat of a 3x3x2 system.
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Fig. 2 -Cloed qimt.eiz-q network model.
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3. THE ,MNDEL

Models of multiprocessor systems are developed both to gain a deeper

understanding of their behavior and to obtain a set of performance indices

that can be used to guide the design of actual systems.

A model cannot include all the details of the system, rather, it is an

abstraction of the real system including the features relevant to the

analysis. Different models are generally constructed, depending on the nature

of the application and the degree of detail required by the study. In our

case, the central feature of the system is the overall processing capability

limitation due to the contention for memories and busses. Our models there-

fore will focus on the loss of processing power due to this contention.

In general we say that a processor can be in one of three different

states:

(i) The processor can execute in its private memory.

(2) The processor can exchange data with other cooperating processors,

by reading frcm, or writing into the cammon memory modules.

(3) The processor can be waiting to access a coimmon memory module.

We say that a processor is ACTIVE when it is in state (1), and the goal

of our analysis is to determine the average percentage of time for which pro-

cessors are active.
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By introducing an ergodic assumption we can say that the above quantity

is equal to the average nunber of active processors divided by the total

nunber of processors. Such quantity is usually known in the literature as

Processing Efficiency. As the nunber of processors is a known constant we can

simply evaluate the average number of active processors, called Processing

Power of the system (P).

P = E E# active processors] (1)

P is the main performance index considered in the sequel. Other impor-

tant performance measures are simply related to P, as shown in section 4.

The following assumptions are made regarding the operation of the sys-

tem:

a) Processors perform a background activity that only requires accesses

to the processor's private memory.

b) Fran time to time processors exchare information, and thus access

the cmmon memory, performing read/write operations.

1c) The duration of the access to the cannon memory is an independent,

exponentially distributed random variable with mean I/p j for the j-th menory

module.

d) When a processor requires access to a common memory module, a path

is immediately established (with zero delay) between the processor and the

referenced menory module, pravided that a bus is available and the menory is

not being accessed by another processor.



e) If a path cannot be established the processor idles, waiting for the

necessary resource(s) (This may not be true for multiprocessor systems using

an interrupt mechanisn. The hypothesis is conservative anyway).

f) Upon menory access canpletion, memory and bus are inviediately

released (with zero delay) and the processor resumes its backjround activity.

The interval between subsequent access requests, is an independent, exponen-

tially distributed, randan variable with mean 1 / \j for the j-th processor.

g) An access request fran processor i is directed to menory j with pro-

bability pij Thus, the access rate fran processor i to memory j is defined

as #\ij=#ipij

The above assumptions guarantee that a markovian model can be construct-

ed. Unfortunately, this does not guarantee that a solution (closed form or

nunerical) can then be easily obtained. In particular, such models show an

explosion of the number of states when the number of system canponents is in-

creased. The analysis beccmes rapidly very tedious even for moderately can-

plex systems.

In order to reduce the number of states we introduce three further as-

sumptions.

h) All processors are assumed to have equal camion menory access rate,

\, and all menories are assued to be equal, so that the average menory access

time is the same for all menories and all processors (1/;1).
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i) A uniform reference model is assumed; this implies that every access

request frcm every processor is directed to any memory with equal probability

I/m, where m is the number of common memory mrdules.

1) Mien a bus goes idle, the next processor to use the bus is selected

at randam among the heads of the queues referencing memories which have become

free.

In formulae, assumptions h) and i) state that:

=  . . . .= (2)

1)

Pij - all i,j

I ij = Xm all i,j

With these additional assunptions we succeed in performing an exact

analysis of some moderately canplex systems, but still cannot attack very

large problems.

The equal processor access rate assunption in h) was shown to be a con-

servative one in the single bus case :AJMO8OJ and is expected so also in the

more general case of multiple busses.

Processors access the cauron memory modules to perform either read or

write operations; we do not distinguish between the two operations in our

models, and do not therefore account for the fact that a processor may attempt

to read data which is not present in comon memory. This results in the pro-

cessor going idle, with consequent throughput reduction. This feature can be
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included in the markovian model, but the state space is greatly expanded. A

more system oriented approach can be pursued, by assuming that a fraction ct of

the accesses is for write operations and a fraction (1-d) is for read opera-

tions. A read operation finds the required information with probability q.

Assuming that the access request generation process is not altered by not

finding the desired information, the actual time spent in useful computation

is decreased by a factor (l-q)(l-A). Thus, the actual processing pour Qf the

system is simply obtained by applying the above factor to the canputed value

of P. Obviously in this case it is necessary to estimate the values of q and

, which depend on many system parameters.

Using all the above assunptions we can now construct a Markov chain to

model the behavior of the system.

The state of the Markov chain is defined by the 2p-tuple

s1r m2' s 2 ... p, sp) (3)

where:

mi is the memory referenced by processor i

s i is the state of processor i

m. can take values:1

0: processor's private menory

k: k-th camon memory module

s. can take values

0: active

j: queueing (j-th in queue) for module mi

-1: accessing camon memory module m.
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This state definition however is not the most convenient fran the canpu-

tational point of view. In fact, using the theory of "Lanpable" Mar1~v chains

IM4E601], we may lunp equivalent states and obtain a Mar1Dv chain of substan-

tially smaller size. The lunping technique is illustrated by an exanple in

section 5.

The state definition and the degree of lmpability of the chain depend

on the policy that is used to assign a free bus to a queueing processor. As-

sunption i) is the most convenient fran the model complexity point of view,

but might not be the one that yields the best perf~rmance. Modifications of

assumption 1) will be briefly discussed in the sequel.
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4. PMORMNCE MEASURES

The processing power is not the most appropriate performance index for

some applications. Other parameters could better describe the quality of the

system in some cases. Fbrtunately, however, many different perfomnance in-

dices can be simply derived fran the processing power.

Define \* to be the rate at which custoners cycle through the queueing

network. Fran Little's result we have:

=P,\ (4)

Applying again Little's result to the entire meory system including

queues and servers we find the average customer delay D:

D =(5)

Finally, subtracting from D the average service time l/;I we have the average

queueing time W:

w=P- P (1o) (6)P\

where p

The average number of queued processors is:

w P \=p -P(14D) (7)
q

therefore the average number of processors accessing camiron memory modules is:
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Ns =- P P (8)

The average cycle time C is then easily obtained as:

C(9)

Fran the values of average cycle time, average queueing time, average

think time and average service time we can now constrict many different per-

formance indices, depending on the particular application.

If the processors are simply updating a data base, a reasonable perfor-

mance measure could be the ratio of the memory access time to the sun of the

access time plus the waiting time. Using the above results, this performance

index is expressed as follow:

1
1db = L.=

+W P(0\+g) (10)

If, on the other hand, our multiprocessor systen is a packet switch

operating under heavy load conditions, where input processors process packets

and write them into a ccxmun memory and output processors read them and again

process then before queueing then for output, then the "think" time represents

the time necessary to process an nccmirng (outgoing) packet and the service

time represents the time necessary to write (read) a packet fran an input

(output) processor (note that the exponential read/write time corresponds to

exponential packet length distribution). The throughput of the packet switch

can then be expressed as:
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Note that each Packet must be processed by an input and an output processor;

both operations require one cyle time, and p packets can be processed simul-

taneously.

Performance indices for other applications can be constructed in a simi-

lar way.

-15-



5. CROSSBAR AR(XITECTURES

We begin by presenting as an example the simplest non-trivial case, a

2-processor, 2-menory, 2-bus (2x2x2) system. (Note: the even simpler case of

a single bus structure is trivial, and can be analyzed using an M/i queue

with finite population. Extensions of the single bus system to different pro-

cessor access rates and general service distributions are found in [AMO80]).

A px2x2 system is a crossbar multiprocessor and can thus be studied as a

closed queueing network with p classes of customers. Due to the assumptions

introduced the solution can be obtained by application of the product form

solution [BASK75]. We shall nevertheless construct a Mar)ov chain model, as

explained before, to prcvide a first simple example.

The state definition is in the case of a 2x2x2 system

(ml s r1 m2 , s 2 )  (12)

and the Markov chain that we obtain using assumptions a) through g) is shown

in fig. 3a. In this case no lunping is possible. However, if we add assump-

tions h) through 1) the transition rates are modified as shown in fig. 3b.

We can apply the lunping technique to this Mar1ov chain by defining mac-

rostates as follows:

(00) = C (0000)

(-10) = C(1-100),(2-100),(001-1),(002-1)]
(-ii) = E(1-111) ,(2-121), (111-1), (212-1))

(-1-1) = C(l-12-l),(2-11-1)] (13)

The lunped chain is shown in fig. 4.
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Steady state probabilities for the chain in fig. 4 are now very easily

evaluated, yielding:

P(-10) = 2p P(00)

P(-ll) = p2 P(O)

P(-1-1) = p 2 P(OO) (14)

P(O0) = El + 2 + T PI

The processing power P, defined as the average number of active processors is

obtained as:

P = 2 P(O) + P(-10) = 2(1+p) [I + 2p + -1 1 (1)

As soon as we increase by one the number of processors we realize that

the general description is not practical. We have 49 states in this case,

that we can lunp to 6 macrostates as shown in fig. 5.

The processing powr is now obtained as:

P = 3 P(OQO) + 2 P(-100) + P(-101) + P(-1-10) (16)

In the same manner we get the lumped chain in the case of four proces-

sors that is shown in fig. 6.

In this case we see that in the lumped chain we have two states with two

processors accessing the common memory and two processors in queue. State a

is such that both processors queue for the same memory and state b is such

-18-
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Fig. 4 - Lumped MBrov chain for the 2x2x2 system.

I x>

/2 "

Fig. 5 - tuped Irlov chain f~r the 3x2x2 syste.
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that the two processors queue for different memories.

The state definition for the lunped chain in the px2x2 case is:

(n n , n) n n2
m, q, q 2  q, - q 2  (17)

where

nm is the number of processors currently accessing a ccnrwon memory

n q, is the number of processors queueing for the memory with the longest

queue

nq is the nunber of processors queueing for the second cxnon memory

currently accessed (set to zero if only one memory is used).

In the case of a px2x2 system we are not interested in the policy followed to

choose the next processor to be served when a bus becames available: the only

thing that can be done is to pick one of the processsors queueing for the

memory that has become available (This is true in general for any crossbar ar-

chitec.re). The fact that we cboose the first in the queue is irrelevant for

the evaluation of the processing powr.

We can now draw the lunped chain in the general case of a px2x2 system

(Fig. 7). The number of states of the lunped chain, N, can be evaluated as:

+ p+ peven
4

N =I

4 + + podd
(18)

The number of active processors associated to each state is:

-21 -
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p-n -n -nIn ql q2  (19)

and thus the evaluation of the processing power is straighforwerd, once the

steady state probabilities associated to the states of the Markov chain are

evaluated.

In the case of a 3 memory, 3 bus system the state of the lunped Markov

chain is defined as:

(n n q2, nq3 ) nql- q2 - q3  (20)

where

n, n , n are defined as before
M q, q 2

nq is the nunber of processors queueing for the third camon memory

currently accessed.

The lunped chain that we obtain is now shown in fig. 8. The transition

rates between the states are not shown, but can be easily evaluated.

In the general case of p processors, m memories and m busses (p > m) the

state of the lunped chain is defined by the (m+i-)-tuple

m q- q 2 - n % (21)

and the definition of the entries is a straightforward extension of the previ-

ous case.

The structure of the Markov chain is the same as in fig. 8 up to level

3, then more states must be considered.
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We can express in the general case the transition rates between two

states, provided that we specify more precisely the state of the MarlaDv chain.

Given a state as in (21), the entries n must be arranged in decreasing

order. We will then have some groups of adjacent entries with the same value.

All the entries of the state can at most increase or decrease by one

unit at a time. Cnly one entry can change at a time.

Given a group of entries n%, nq .... n qk+ , all with the same value,

only the first entry of the group can increase by one unit, and only the last

entry can decrease by one unit. In this manner we are sure to preserve the

entries in decreasing order.

Cbnsider imw a state

(i, ql, q 2 ... , m) (22)

this state can evolve into at most 2(r+l) other states, which are identified

by the following transitions:

i--> i+l

i--> i-l i>0

(23)

qk -> + qk first entry of a group

q--> qj-I qj last entry of a group, qj>0

The rates associated to each of these transitions are:
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R(i i+l)

m (24a)

R~q~ - %+l) - __ 1 ~\ i<m, n<p, k <i(2b

R(i -> i-1) = (i-s) ;.i i-1>s (24c)

R(q 1 - q.-1) = 1 pi j<i (24d)

wbere:

i

1 =# of entries qlq'...,q that have the same

value of (including qj itself) (25)

s # of nonzero entries q,,q 2 , ... <i

The number of active processors, associated to each state is simply p-n;

it is thus very easy to obtain the processing powr, once wehave solved for

the steady state probability distribution of the Marlgv chain.
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6. KJLTIBJS AIMTSMUES: EXACT MODELS

For multiple bus architectures, the caplexity of the Markov chains is

much larger then for crossbar, even when lumpg is used. Therefore me can

handle cnly moderately caaplex systems using the exact state description. For

the most general case we must resort to approximate models.

The state definition for the exact lumped chain in the case of a multi-

ple bus system is:

(n' ql, q2 9.... qm) (26)

where

nm  is the number of processors currently accessing a cammon memory

ql..... q are the numbers of processors queueing for the memories

currently accessed, arranged in decreasing order

are the numbers of processors queueing for a free memory,

not accessible because no bus is available, arranged in decreasing ord-

er.

Some examples of lumped Markov chains are given in figs. 9 through 13,

for 3x3x2, 4x3x2, 5x3x2, 4x4x2 and 4x4x3 systems, respectively.

Note that an increase in the number of processors and/or memories ccm-

plicates the Markov chain, whereas an increase in the number of busses tends

to simplify the Markovian representation. This is due to the fact that the

presence of a higher number of busses makes the system more similar to a
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crossbar, and thus reduces the nunber of possible queueing situations.

When the nunber of busses is just one less than the nunber of proces-

sors, the policy for the choice of the next processor to be served is ir-

relevant. In the other cases the Mrov chain depends on such policy. OCn-

sider for instance a 4x3x2 system where the next processor served is the one

that has been waiting longest. In this case the Markov chain is the one shown

in fig. 14, where an asterisk is added to indicate which customer has priori-

ty. In general, modifications of assunption 1) require that more information

about the state of the system queues is recorded in the Markov chain state

description. The resulting chains may thus be much more caplex than those

obtained using assumption 1).

The general p~xmb case is not easy to handle, even after lunping is ap-

plied. We will therefore introduce in the next section some approximations

which further reduce the size of the M.rkov chain and permit us to attack the

most general case.
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7. HJLTIBUS ARCHITECTURES: APPROXIM!'TE DDELS

The reason for the introduction of approximate MNrkDvian models is that,

for general multibus systems, the number of states increases very rapidly with

system size. The explosive growth is due to the detailed information that the

states must record about the queues inside the system. In particular for each

state of the Markov chain the number of customers queued for all ccammn memory

modules must be recorded. That is, we not only need to know the nunber of the

queued customers, but also must be concerned with all the possible weys of

distributing these customers among the system queues. If we reduce the amount

of information about the status of the queues we have no longer a first order

Makrov chain behavior in the evolution of the system through the state space.

The approximate Markov models that we introduce in this section analyze the

system behavior' by assuming that the transitions beteen the states with re-

duced queueing information still satisfy the MarRDv property. The results

that we will obtain in this way are approximate and must then be campared to

the exact ones to test their accuracy.

In order to define a simplified model, one needs to specify:

a) the state definition, that is the amount of information used to

describe the state of the Markov chain. As wes mentioned before we will use

reduced information about the queues in the system.

b) the method to calculate the transition rates for the simplified Mr-

kov model. As the behavior is approximated by the simplified Markov chain the

transition rates must be evaluated according to some empirical rule, and
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several different rules can be envisioned.

Three different state definitions (naned A. B and C) and two heuristic

methods for the evaluation of the transition rates (named I and 2) were con-

sidered. The approximate models are named using the letter referring to the

state description and the number referring to the evaluation of the transition

rates.

Let us first begin with a very simple model:

Model Al - The state of the system is simply represented by the to-

tal number of processors waiting either for a busy memory or for a

busy bus, and by the number of processors currently accessing a cam-

mon memory module. We thus have a pair

(nm, nq) (27)

where

nm = # of processors in service

n = # of processors queued
q

The transition rates are evaluated by assuming that each active pro-

cessor can request any memory module with the same probability (uni-

form reference model). Furthermore, each queued processor is as-

sumed to request, with uniform probability, any of the common memory

modules currently not accessible (this approximation implies that a

queued processor can randomly reselect a new memory when a memory or

bus becanes unblocked).
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If we apply this approximation to the 2x2x2 system and to the 3x2x2 sys-

tem we find again the exact (lumped) chains. In other words, the above as-

sumptions are automatically verified in such small systems, and therefore no

approximation is introduced.

Consider now a 4x2x2 system: in this case we have two states in which

two processors are queued. our approximate chain will consider these two

states as a single one. Note, however, that the merging violates the condi-

tions for lumping. Some error will, therefore, appear in the results due to

such "prohibited" lunping. The chain that we get is shown in fig. 15.

This approximation can be extended very easily to the px2x2 system, and

the resulting chain is shown in fig. 16. The number of states N is in this

case only twice the number of processors.

To illustrate the rate computation, consider states (2,p-2) and (l,p-2).

The rate from (2,p-2) to (1,p-2) is evaluated by multiplying the rate out of

state (2 ,p-2), which is 2p, by the probability that none of the p-2 queueing

processors is referencing the memory that becomes free. Such probability is

(1/2 )p - 2 .

Carrying out the analysis for the most general case, we find that the

pxmxb system is represented by a arkov chain with b vertical chains (see fig.

17) and a total nunber of states N, where:

N = 1 + b [p + 1 (1-b)] (28)
2J

A simple upper bound on N is N < pb + 1.
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The transition rates can be explicitly written for the most general

case. Their derivation is reported in appendix 1. Since the number of active

processors is p-i-j, the processing power can be simply evaluated once the

steady state distribution of the Markov chain is known.

Next w introduce a modification of model Al, by specifying a different

method for the calculation of the transition rates:

Model A2 - The state of the system is defined as in model Al). The

transition rates are evaluated using an "averaging" technique.

We describe the model A2 using a 3x3x2 system as an example.

The exact lunped chain for the 3x3x2 system is shown in fig. 9. Using

our approximation, the states (2100) and (2001) are merged into state (2,1),

even if this violates the lunping conditions. In the approximate chain all

the transition rates are unchanged, except for those in and out of state

(2,1). Namely, *he rates into state (2,1) are obtained by adding the rates

into the two merged states. The rates out of state (2,1) are obtained by not-

ing that the total rate out must be 2/, and that the rate out of the two

merged states is p towards state (1,I) and ;1+2;1 towards state (2,0). We thus

average the rate out of state (2,1), keeping the same ratio. The resulting

chain is shown in fig. 18.

Note that no error is made in the approximation if the merged states

have equal steady state probability. Otherwise the resulting chain only ap-

proximates the exact one.
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The px2x2 system, using this approcimation, is represented by the chain

of fig. 19.

The more general case of p processors, m-menories, 2 busses can still be

handled, provided that ve solve the canbinatorial problem of counting the

number of states at each level of the exact lunped chain. The level of the

state is defined as the sun of the number of processors accessing common

memory and the nunber of queued processors. There is only one state at levels

0 and 1, and there are two states at level 2. Fbr levels larger than two w

have ane state with nm=l and n(m,2,X) states with nm=2 . The expression of

n(m,2,k) is derived in appendix 2. The approximate chain in the case of a

pxmx2 system is shown in fig. 20.

The extension to the general pxmxb system with an arbitrary number of

busses, requires the counting of the states at each level of a more canplex

Mar)yov chain, and the corresponding evaluation of new transition rates.

We now consider another definition of system state (yet retaining the

rate computation rule of model A2):

Model B2 - The state of the system is represented by the following

triplet: (1) the number of processors accessing a conon memory

module; (2) the total number of processors waiting either for a busy

menory or for a busy bus; and (3) a flag which is set to zero when

no processor is queued for a bus, and is set to one when one or more

processors are queued for a bus in order to access a free carum

menory module.
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Namely, the state is defined by the triplet

(nm, nq, f) (29)

where

nm = # of processors accessing common memory

n = # of queueing processorsq

f flag: 0 no queue for a bus

1 one or more processors are queued for a bus

The transition rates are evaluated using the averaging technique

described in the approximation A2.

Clearly, model B2 is a refinement of A2, since the state is improved by

adding a binary information concerning the system queues.

We immediately recognize that for crossbar architectures the B2 approxi-

mation is the same as the A2 approximation, since the flag is always zero (no

wait for a bus).

Consider now a 4x3x2 system: the approximate chain is shown in fig. 21.

If we canpare thi- chain with the exact lunped chain of fig. 10, we see that

four states have been merged into two, violating the lunpability conditions.

The new transition rates are canputed using the averaging technique. The ap-

proximate Markov chain for a 5x3x2 system is shown in fig. 22.

The general pxmx2 case can be managed by using the combinatorial results

of appendix 2. The resulting chain is shown in fig. 23. The total number of

states is in this case
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N = 3(p-l)+ (30)

As an example the pK3x2 chain is shown in fig. 24. In this particular

case the canbinatorial results can be put in polynanial form (see appendix 2).

The runber of active processors associated to each state is P-nm-nq,

thus the processing power can be easily canputed, once the steady state pro-

bability distribution of the chain is know.

All the preceding approximate models lack of one feature which is very

desirable in all analytic models: namely, a closed form solution. We intro-

duce here the simplest possible model, which provides us with a closed form

solution.

Model C2 - The system state is simply the nunber of active proces-

sors: no account is kept of the state of internal queues. The tran-

sition rates are evaluated using the averaging technique.

The transition diagram in the case of a pxrmx2 system is shown in fig.

25. We have reduced the system description to a birth and death Arkv chain,

whose solution is easily obtained: denote by w(i) the steady state probability

of state i, then

I 1 k-0 V kIbil ~ w( p)

(31)

pli p-j-2 11 -1
W(p) Iii.+ . I'I - OY

I ' Io k-o k II

with
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y 2 n(m, 2,i) +1 (32)
= n(m,2, i) + 1

where n(m,2, i) is defined in appendix 2. The processing power can then be ex-

pressed as:

p 1 ip-p-i-2 1

P= k

i- + iLIP- p-j-2 1
+ Ip1 m Yk= 1 (33)jFo I-- )QO II

The general pxmb case can also be solved. The resulting Narkv chain

is shown in fig. 26. The steady state probabilities are in this case:

n(i) = I~.p-i -1 w(p)
II1 1! (34a)

W(P) I I P3k=i II (34b)

where:

b-i i-b
j pj(i) + b % pb(j+b) Pm-b(i-2b-j+m) I= 1 jI I0 I i>l

P b-i i-b
i p j (i) + 1P0-b ( j +b) Pmb(i - 2b- j +m) I (35)

and pi(j) is defined in appendix 2.

The expression of the processing power P is then as follows:

P = P-t IL.,,p- j  I_11I J + I g -1I
)o 1 I1  k-1 (36)
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8. STOCHASTIC PETRI NET MDELS

Petri net models and derivations thereof CPETR66, HDLT68, EVLT70,

PETR73] have been introduced by several authors for the modeling of computer

systems [NOE7I, NMJTT72, NOE73, KELL76b, PETE77, AGER79, SHAP79]. Although in

standard Petri nets no measure of time is considered (only a partial ordering

of the occurrences of events is established), sane of the models presented in

the literature allow a measure of the flow of time by introducing the concept

of transition times. Transition times are assumed to be deterministic, even

in the andman Petri net models introduced by Shapiro [SHAP79]. MDlloy

[MCEL8] first introduced the idea of randan transiton times, by allowing them

to be exponentially distributed randan variables. We show in this section how

such models can be used to describe the behavior of multiple bus multiproces-

sor systems and to obtain the Markovian models discussed in the previous sec-

tions.

Fbr an introduction to Petri nets the reader is referred to the tutorial

papers by Peterson and Agerwala [PETE77, AGER79].

Fbllowing [AER79] we define a Petri net (PN) to be represented by a

bipartite, directed graph: PN = (T,P,A), bere:

T = [lt 2 ... *tn' is a set of transitions

= plP 2 .... pm is a set of places

A < [TxP}U[PxT) is a set of directed arcs (37)

The set ( T U P I forms the set of nodes of the Petri net.
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The dynamic properties of the PN can be studied by analyzing the move-

ments of tokens inside the net. A PN with tokens is a marked Petri net MPN =

(T,P, AM). A marking M of a P24 assigns tokens to places; M can be viewed as a

vector whose i-th ccnponent represents the nunber of tokens assigned to the

i-th place Pi. A marking can also be viewed as a mapping fran the set of

places P to the natural nunbers I:

M P -> I

M - 0V 2' . .. ' (38)

It is camnon practice to represent places by circles, transitions by

bars and tokens by black dots. A simple Petri net is shown in fig. 27.

Fbr a given transition t we define the set of input places I(t) as:

I(t) = ( p I (p,t) 4 A 1 (39)

in a similar manner the set of output places is defined as:

O(t)=f p I (t,p) A A (40)

A transition is enabled if the marking M of the Petri net is such that:

M(p) > 0 all p 4 1(t) (41)

Enabled transitions can fire thus removing one token fran each input place and

putting one token in each output place. The firing of a transition alters the

marking of the PN and may then enable other transitions. The dynamic behavior

of the Petri net can thus be investigated studying the sequences of markings

produced by firing the transitions.

Standard Petri net models do not consider time as a parameter of the

net; the firing of a transition is assuned to be instantaneous. Modified
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models (see for instance the E-net models ENuIIT72, NOE73]) allow the introduc-

tion of fixed transition times. With stochastic Petri nets the transition

times are assumed to be exponentially distributed randan variables (possibly

with zero mean, thus accounting for immediate transitions). More precisely,

the time that elapses between the enabling and the firing of a transition is

an exponeutially distributed randon variable, the firing time is still assumed

to be zero, thus in the case of two conflicting transitions the firing of one

disables the other.

A continuous time stochastic Petri net (SPN) is thus an extension of the

standard Petri net:

SPN = (P,T,A,M,6) (42)

where 6 is the set of the transition rates associated to each transition:

6= [616 2 ..... 6n (43)

A discrete time SPN can also be introduced, by considering geanetrically

distributed transition times [MOLLSO].

Petri nets are useful in modeling asynchronous concurrent activities in

real systems. We can attach a physical interpretation to markings and transi-

tions: a marking can represent the state of the system and a transition can

represent an event which modifies the system state. Consider for example the

very simple system of fig. 28: two processors access an external common

menory. The behavior of this system can be represented by the PN of fig. 27,

by giving the following interpretation to places and transitions:
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Pi processor I active

p2 processor 1 accessing ccmmon memory

P3 bus available

p4 processor 2 active

P5 processor 2 accessing camnon memory

t I processor 1 seizes the bus

t 2 processor 1 releases the bus

t 3 processor 2 releases the bus

t 4 processor 2 seizes the bus

With this model we reprezent the possible conflicts in access requests, but do

not explicitly model the queueing of a processor in order to access the camon

mencry. This feature can be obtained by adding two places and two transitions

to the net as shown in fig. 29. The interpretation of the added nodes is:

p6 processor 1 queued

p7 processor 2 queued

t processor 1 issues a request

t processor 2 issues a request
6

The marking shown in the figures indicates the initial state of the system.

In order to cbtain the full definition of the stochastic Petri net we must as-

sociate a rate with each transition. Using the same notation as in section 3

we have:

61 = 64 = oo immediate transition

62 = 63 = ji memory access ccmpletion rate

65 = 0\ access rate of processor 1

66 = o2 access rate of processor 2 (44)
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The analysis of Petri net models is usually based on the properties of

the reachability set associated to the PN. The Rechability set of a PN is the

set of all markings reachable from the initial marking M. A marking M' is im-

mediately reachable from M if it can be obtained from M by firing some enabled

transition. A marking M' is reachable fran M if it is immediately reachable

from M or if it is reachable frcn any marking immediately reachable from M.

The reachability set of the SPN of fig. 29 is easily obtained, and it is shown

in fig. 30. Marking 8 is somewhat different from all the others, as it is ob-

tained from markings 2 and by firing a finite rate transition before an im-

mediate transition. Marking 8 is therefore reachable with probability zero.

The nunber of tokens in any place can be at most one for all markirgs.

This means that the SPN is safe. A place in a PN is said to be safe, if it

contains at most one token; if all places of a PN are safe, then the PN is

safe. We also note that all transitions are such that for each marking M,

there is a marking M', reachable from M in which the transition is enabled.

This means that all the transitions in the net are live, hence the PN itself

is live. Liveness is an important property as it guarantees that the PN is

deadlock-free.

Due to the memoryless property of the negative exponential distribution,

the SPN is isomorphic to a continuous time Markov chain as shown by MDLloy

[MCL80]. The state space of the Markov chain can be obtained from the

reachability set by eliminating those markings that enable an immediate tran-

sition (6 i = oo) . In the case of the SPN of fig. 29 we must eliminate mark-

ings 2 and 4 that enable t1 and t 4 , respectively, and marking 8 that enables

both. W thus have a 5-state Markov chain that can be represented with the
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t P3 to j

Fig. 29 - Stochastic Petri net model of the tuo-processor system.

Mrking 1 p 2 p3 P4  P5 P6 P7

1 10 1 1 0 0 0

2 0 0 1 1 0 1 0

3 1 0 1 0 0 0 1

4 0 1 0 1 0 0 0

5 0 0 1 0 0 1 1

6 1 0 0 0 1 0 0

7 0 1 0 0 0 0 1

8 0 0 0 0 1 1 0

Fig. 30 - Reachability set of the Stochastic Petri net of fig. 29.
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transition diagram of fig. 31, where the state definition is as follows:

(sis s2 )  (45)

with:

s i = state of processor i

w = active

a = accessing common memory

q = queued

The marking that corresponds to the state is also indicated in the figure.

The transition rates are those associated with the transition that has to be

fired in order to go fran one state to the other. In the case of immediate

transitions, we consider the state where the immediate transition is enabled

to coincide with the state resulting fran the firing of the immediate transi-

tion.

Cnsider a 2x2x2 system, as described in section 5. We can represent

the behavior of such system using the SPN of fig. 32. The interpretation of

places and transitions is a simple extension frm fig. 29. The transition

rates are:

62 = 0\12

63 = 64 = 0= oo

65 = 6'1, =

6 6 = 612 = 9

67= \21

68 = \22 (46)
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The reachability set is now shown in fig. 33; 23 markings are possible,

4 are reachable with probability zero, 8 of them enable inmediate transitions,

hence the associated Markov chain has eleven states. The construction of the

Markv chain using the rates associated to each transition yields exactly the

chain of fig. 3a. Fran the SPN description of the system we can obtain the

Markov chain description presented in the previous sections.

Note that the stochastic Petri net of fig. 32 is safe and live, hence

the system (as modeled) is deadlock-free.

Petri nets have been used to describe and model the synchronization of

events. In the case of multiprocessor systems that exchange messages through

caInah meaTories, processors are synchronized in the sense that a message can

be read only after it has been written. As we mentioned in section 3 a pro-

cessor may look for a message in a cammon memory and not find it. Moreover,

the common memory area is limited, it can acccmodate only a fixed number of

messages (assume that the canton memory consists of several buffers Aiich can

accancodate one message each). These features of the real system can be in-

cluded in the SPN model rather easily. Cbnsider again the simple system of

fig. 28. The message exchange through finite size memories can be modeled ex-

plicitly using the SPN of fig. 34, where the interpretation of places is as

follo s:
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Marking Pl P2 P 3 P4 P5 P6 P7 P8 P9 P10 Pll P12

1 1 0 0 0 0 1 1 1 0 0 0 0

2 0 1 0 0 0 1 1 1 0 0 0 0

3 0 0 1 0 0 1 1 1 0 0 0 0

4 1 0 0 0 0 1 1 0 1 0 0 0

5 1 0 0 0 0 1 1 0 0 1 0 0

6 0 0 0 1 0 0 1 1 0 0 0 0

7 0 1 0 0 0 1 1 0 1 0 0 0

8 0 1 0 0 0 1 1 0 0 1 0 0

9 0 0 0 0 1 1 0 1 0 0 0 0

10 0 0 1 0 0 1 1 0 1 0 0 0

11 0 0 1 0 0 1 1 0 0 1 0 0

12 1 0 0 0 0 0 1 0 0 0 1 0

13 1 0 0 0 0 1 0 0 0 0 0 1

14 0 0 0 1 0 0 1 0 1 0 0 0

15 0 0 0 1 0 0 1 0 0 1 0 0

16 0 1 0 0 0 0 1 0 0 0 1 0

17 0 1 0 0 0 1 0 0 0 0 0 1

18 0 0 0 0 1 1 0 0 1 0 0 0

19 0 0 0 0 1 1 0 0 0 1 0 0

20 0 0 1 0 0 0 1 0 0 0 i 0

21 0 0 1 0 0 1 0 0 0 0 0 1

22 0 0 0 1 0 0 0 0 0 0 0 1

23 0 0 0 0 1 0 0 0 0 0 1 0

Fig. 33 - Reachability set of the Stochastic Petri net of fig. 32.
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P1 (I ) processor 1(2) active

P2(12) processor 1(2) queued for write

P3 (1 3 ) processor 1(2) queued for read

P4(14) processor 1(2) testing the availability of buffers

P5(15) processor 1(2) testing the presence of messages

P6(16) processor 1(2) writing

P7 (1 7 ) processor 1(2) reading

p8(9) messages for processor 1(2)

P1 0  bus available

P1 8  buffers in caron menory

The interpretation of the transitions is:

t1 (1 1 ) proc. 1(2) issues a write request

t 2(12 )  proc. 1(2) issues a read request

t3(13 )  proc. 1(2) seizes the bus for write

t 4 (1 4 ) proc. 1(2) seizes the bus for read

t 5 (1 5 ) proc. 1(2) found no message

t 6 (1 6 ) proc. 1(2) found no buffer

t7(17) proc. 1(2) found a message

t (1 8 ) proc. 1(2) found a buffer

t( 19 ) proc. 1(2) write ends

t10(20) proc. 1(2) read ends

The imediate transitions in the SPN are:

t3,t4,t7',lt 1 3, t14, t1 7,t18  (47)

Tb all other transitions we can assign finite rates, according to the defini-

tions of section 3. The SEN is live, thus the system is deadlock-free, but,
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in general, it is not safe, as places p., p9 and P1 8 contaip more than one to-

ken at a time, unless the common memory consists of a single buffer. The SPN

is however k-bounded, that is, for each marking the number of tokens in any

place of the network is smaller than k, k being the number of buffers avail-

able in the cammon memory. The k-boundedness of the SRi guarantees that the

reachability set is finite. Since the size of the state space of the

equivalent Markov chain is smaller than or equal to the size of the reachabil-

ity set, it too is finite.

The Petri net model provides a formal description of the operation of

the system: fran fig. 34 and the interpretation of places and transitions, we

obtain all the information necessary to describe the way the system operates.

The SPN is in this case much more canplex than in fig. 29, where we did

not explicitly model the synchronization between transmitting and receiving

processor, 75 markings are reachable in the single buffer case. Nevertheless,

fron fig. 34, we can obtain a Markov chain that models the behavior of the

system including those features, using the same rules as before. The canplex-

ity of the result limits the applicability of these highly detailed models to

very small systems.

-65-



9. RESULTS

Exact and approximate analytic results were canpared by considering a

4x3x2, a 4x4x3 and a 6x4x2 system respectively. The exact chains for the

first two systems are shown in fig. 6 and 8, respectively. The exact chain

for the third system (not shown here) has 37 states.

The results for the 4x3x2 system are presented in fig. 35. The first

colunn gives the value of p = , the second colunn shows the exact value of

processing powir as a function of p , evaluated using the exact lunped chain.

The other colunns show the percentage error which affects the processing powr

value computed with each of the four approximations introduced in this report.

For this case, the exact chain has 12 states, approximations Al and A2 have 8,

approximation B2 has 10 and approximation C2 has 5 states.

The results for the 4x4x3 system are shown in fig. 36, using the same

format. The exact chain has again 12 states, whereas the approximate chains

have 10, 10, 11 and 5 states, respectively.

In fig. 37 the results for the 6x4x2 system are presented. The number

of states are in this case 37, 12, 12, 16 and 7.

A nunber of observations can be made based on these results. Firstly

approximations Al, A2 and B2 seem to yielu upper bounds on the processing

power, whereas C2 gives a lowr bound. The upper bound can be intuitively ex-

plained for approximation Al, since the random redistributing of processors to

memories tends to relieve memory congestion and therefore imprce performance.

The bounds seem to be rather tight, since percentage errors well below 10%
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p exact Al A2 B2 C2

.1000e-02 .3996e+O1 .00 .00 .00 .00

.lOOe-Ol .3960e+01 .00 .00 .00 .00

.1000e+O0 .3604e+O1 .02 .04 .00 -. 01

.3000e+00 .2892e+O1 .30 .53 .04 -.20

.5000efO0 .2338e+O1 .84 1.33 .14 -. 50

.1000e+Ol .1506e+01 2.15 2.95 .50 -1.12

.3000e4O1 .5806e+00 3.82 4.12 1.27 -1.65

.5000e+Ol .3559e+00 4.07 4.02 1.49 -1.65

.1000e402 .1804e+00 4.13 3.79 1.63 -1.58

.1000e+03 .1824e-01 4.06 3.48 1.70 -1.45

.1000e+04 .1826e-02 4.05 3.44 1.70 -1.43

Fig. 35 - Results for the 4x3x2 system.

-67-



pexact Al A2 B2 C2

.1000e-02 .3996e+O1 .00 .00 .00 .00

.1000e-01 .3960e+01 .00 .00 .00 .00

.lO00e+00 .3613e+01 .00 .00 .00 -. 18

.3000e+00 .2948e+01 .06 .11 .04 -.82

.5000e+00, .2440e+01 .25 .42 .15 -1.28

.1000e+401 .1651e+01 1.00 1.73 .58 -1.69

. 3000e+01 .6847e+00 3.13 5.67 1.78 -1.91

.5000e+01 .4280e+00 3.94 7.30 2.23 -2.09

.1000e+02 .2203e+00 4.63 8.78 2.63 -2.36

.1000e+03 .2258e-01 5.26 10.25 3.01 -2.77

lO00e+04 .2264e-02 5.31 10.40 3.05 -2.83

Fig. 36 - Results for the 4x4x3 system.
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p exact Al A2 B2 C2

.l10Oe-02 .5994e+O1 .00 .00 .00 .00

.1000e-O1 .5940e+01 .00 .00 .00 .00

.1000e+00 .5386e+01 .07 .06 .01 -. 39

.3000e+O0 .4167e+01 .89 .59 .15 -2.24

.5000e+00 .3191e+O1 1.82 .9Q .30 -3.45

.1000e+Ol .1858e+01 2.52 .89 .28 -3.73

.3000e+Ol .6513e+00 1.83 .27 .07 -2.75

.5000e+Ol .3927e+00 1.56 .18 .08 -2.49

.1000e+-02 .1970e+00 1.36 .13 .10 -2.29

.1000e+03 .1974e-01 1.19 .12 .12 -2.10

.1000e+04 .1974e-02 1.17 .12 .12 -2.08

Fig. 37 - Results for the 6x4x2 system.
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were tipically observed (except for approximation A2 in the 4x4x3 case).

Tight upper and lower bounds are extremely useful, as they allow to determine

a small range in which the exact result must lie, avoiding the computational

complexity of the exact problem.

Secondly, we observe that the largest system (6x4x2) shows the smallest

percentage errors. This may be due to the fact that the rate averaging ap-

proximation gives better results for higher number of states. If the trend of

smaller errors with larger systems were verified for even larger models, then

we could conclude that our approximate models are more than adequate for the

study of large multibus systems.

In order to study the influence of the simplifying assumptions intro-

duced, and to test the performance of the approximate techniques on larger

systems, a simulation program was written in GPSS. Due to the peculiarities

of the language, sane discrepancies are expected betwen the simulated systems

and the models for which we performed a MErlwv chain analysis. Nevertheless a

comparison betwen the analytic and the simulation results shows a very good

agreement. As an example, in fig. 38 results are slown for the 2x2x2 system.

The influence of the simplifying assumptions was studied taking the

6x4x2 system as a benchnark. Exact and approximate analytic results for this

system were shown in fig. 37. First, the impact of memory access time distri-

bution on system performance is tested. Fig. 39 shows the value of the pro-

cessing power - obtained via simulation - for a 6x4x2 system with fixed memory

access time. The fixed access time results are smaller than the exponential

access time results in fig. 37, as is expected from known results in queueing

theory.
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p analysis simulation

0.01 1.97 1.98

0.1 1.80 1.81

0.3 1.49 1.46

0.5 1.26 1.26

1. 0.89 0.87

3. 0.41 0.39

5. 0.25 0.24

10. 0.13 0.12

Fig. 38 - Canparison of analytic and simulation results

for a 2x2x2 system.
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P P

.001 5.99

.01 5.94

.1 5.42

.333 4.14

.5 3.37

.75 2.49

1. 1.95

3. 0.66

5. 0.40

Fig. 39 - Processing power of a 6x4x2 system with

fixed access times.
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Next, the uniform menory reference assumption is relaxed by assuming

that access requests fran any processor are directed to memory 1 with prcba-

bility cj, and are uniformly distributed among all other memories. That is, we

set:

Pil = all i

p = all i, j=2,.. .,m
ij r n

The results are reported in Fig. 40. We can see that the value c = I/m is the

one that maximizes the processing power. This result was expected, since high

values of d imply that one memory is the bottleneck of the system, whereas low

values of 4 mean that the accesses are mainly directed to three memories.

Both situations increase memory contention and thus decrease system

throughput.

The increase in efficiency gained by varying the the number of busses

was also analyzed. Fig. 41 shows simulation results for a 6-processor, 4-

menory system using a number of busses varying fran 1 to 4. The increase in

processing powr is negligible for low values of p, but becomes very signifi-

cant for heavily loaded systems. In the latter case the increase in perfor-

mance clearly shows a "diminishing return' behaviour.

Finally, a 16-processor, 8-menory, 3-bus system was simulated, in order

to test the accuracy of the approximate models for large system size. Results

are shown in fig. 42. The approximate Mrkov chains of models Al and C2, hav-

ing 46 and 17 states respectively, were solved. The results show that the ap-

proximate models behave very iell for a system of this size; indeed, the ap-

proximate results are so close to the simulation results that they fall within
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p .01 .1 .25 .5 .75 .9 .99

.001 5.994 5.994 5.994 5.994 5.994 5.994 5.994

.01 5.939 5.940 5.940 5.939 5.938 5.937 5.937

.1 5.367 5.379 5.388 5.368 5.268 5.219 5.165

.333 3.903 3.966 4.001 3.818 3.365 3.119 2.823

.5 3.103 3.151 3.178 3.014 2.488 2.186 1.977

.75 2.311 2.313 2.358 2.172 1.704 1.461 1.351

1. 1.787 1.829 1.874 1.699 1.312 1.093 0.995

3. 0.633 0.636 0.641 0.584 0.441 0.378 0.339

5. 0.380 0.384 0.390 0.354 0.262 0.224 0.205

Fig. 40 - Processing power of a 6x4x2 system with non uniform

menory reference (values of d in the top row).
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p 6x4xl. 6x4x2 6x4x3 6x4x4

.001 5.99 5.99 5.99 5.99

.01 5.94 5.94 5.94 5.94

.1 5.16 5.39 5.39 5.39

.3 2.9 4.00 4.11 4.12

.5 1.98 3.18 3.35 3.41

1. 1.02 1.87 2.16 2.16

3. 0.33 0.64 0.81 0.83

5. 0.21 0.40 0.50 0.50

10. 0.10 0.19 0.25 0.26

Fig. 41 - Processing pomr of a 6-processor, 4-memory

system when the number of busses is varied.
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p simulation Al C2

.001 - 15.98 15.98 15.98

.01 15.84 15.84 15.83

.1 14.24 14.27 13.89

.333 8.59 8.73 8.20

.5 6.01 5.99 5.79

1. 2.99 2.99 2.97

3. 1.01 1.00 0.99

5. 0.60 0.60 0.60

10. 0.30 0.30 0.30

Fig. 42 - Simulaticn and approximate analytic results

for a 16x~x3 system.
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the simulation confidence interval. Mreover, since the system of linear

equations associated with the approximate Markov chain can be easily solved

with numerical methods, the approximate models require much less canputer time

than a simulation progran.
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APPENDIX I

In this appendix we give expressions for the transition rates of the ap-

proximate Mrov chain of model Al in the general case of a pxmxb system.

(onsider that, given that we are in state (i,j), transitions can occur

to at most four neighboring states:

(i+l, j) (i-l, j) (i, j+l) (i'j-l) (AI. i)

and we denote such transitions, respectively, with the notation

i-->i+l i-->i-i j--> j+1 j--> j-1 (AlI.2)

Using the simplifications introduced we associate to these transitions the

following rates:

O<i<b
R(i-> i+l) = (p-i-j) ,\ m pi-j> (A1.3)

Ii-l>i-jj

li VTI i<b

R(i-> i-1) =
lb-ll j i b

(Al.4)

IIS(P- i- j) ii<b, p:-i- j>0

R(j-' j+i) = (p-b-j) \ i=b, p-b-j>0

I (Ai.5)
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R(j- j-1)=
bl b-1~ I ib

I I~I I(Al.6)
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APPENDIX 2

In this appendix we give expressions for the number of states at level 1

of the exact lumped chain in the case of a pxmx2 system.

We want to count the number of states that show some properties in order

to evaluate the transition rates of the approximate Markov models using the

averaging technique introduced in section 7.

The level of a state is defined as the difference between the total

number of processors and the nunber of active processors.

At levels 0 and 1 there is only one state, at level 2 there are two

states, one with one processor accessing camrcn memory and one with two.

Fbr 1>3 we know that %e have one state with nm=1 (see eq. 15), but we do

not know how many states exist with n=2. The nunber of such states can be

evaluated by applying some results in ccnbinatorial analysis.

Define the numbers Pk(n) by the recurrent relation

k(n) = pk(n-k) + Pk_l(n-k) + ... + pl(n-k) + po(n-k) (A2.1)

with

pk(n) = 0 n<k , k<0

po(n) 1 n>0 (A2.2)

pk(k) = I k>0

Note that Pk(n) is the number of unordered partitions of n into k parts, with

k and rn integers.

-81-



Now we can state that the number of states at level 1=K+2, 1>3, such

that n =2 in a pxmx2 system is:m

n(m,2,k) =j 0 IP 2 (i+2) Pm 2 (k-j+m-2)l , k.-2 (A2.3)

out of this number, sane states will be such that no processor is queueing for

a bus to reach a free memory. The number of these states is:

no (m,2,k) = p2 (k+2) , kp-2 (A2.4)

On the contrary the number of states such that sane processor is queueing for

a bus is:

n ~k- IP2j2 k 21 k:-n1 (m,2,k) = I

Finally, the number of states at level l=k+2, 1>3 with some processor queueing

for a bus (if more than one then all processors queueing for the same memory

module) and at least one queue for the busy memories empty, is:

k-i
n1 (m,2,k) = pl(+l) = k , k9-2 (A2.6)

In the particular case of three memories (n3) the above results can be

put in polynanial form:

k + k +3 Kodd

n(3,2,k) =

I-+k + 1  k even
2(A2.7)
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• 1 k+l
k K odd

2 ee(A2.8)

h2 + k od

n (3,2,k) 
4 2

k2  k k even

(A2.9)
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